Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

The orthorhombic polymorph of pyra-zine-2-carboxylic acid revisited

Jan Grzegorz Małecki, ${ }^{\text {a }}$ Rafal Kruszynski ${ }^{\text {b* }}$ and Joachim Kusz ${ }^{\text {c }}$

${ }^{\text {a }}$ Department of Crystallography, Institute of Chemistry, University of Silesia, SzkoIna 9, 40-006 Katowice, Poland, 'Institute of General and Ecological Chemistry, Technical University of Łódź, Zeromskiego 116, 90-924 Łódź, Poland, and ${ }^{\text {c Institute }}$ of Physics, University of Silesia, Uniwersytecka 4, 40-006 Katowice, Poland Correspondence e-mail: rafal.kruszynski@p.lodz.pl

Received 15 June 2007; accepted 19 June 2007
Key indicators: single-crystal X-ray study; $T=150 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$;
R factor $=0.030 ; w R$ factor $=0.083$; data-to-parameter ratio $=10.2$.

The crystal structure of the orthorhombic polymorph of the title compound, $\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}_{2} \mathrm{O}_{2}$, was previously reported in the space group Pna2 2_{1} TTakusagawa, Higuchi, Shimada, Tamura \& Sasada (1974). Bull. Chem. Soc. Jpn, 47, 1409-1413]. Redetermination of this structure shows that the space group is centrosymmetric, Pnma, with the molecule located at a special position of m symmetry. The molecules are joined via $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds into a chain and further via $\mathrm{C}-$ $\mathrm{H} \cdots \mathrm{O}$ interactions into a sheet parallel to (010). No face-toface stacking interactions are observed in this polymorph.

Related literature

For previously reported polymorphs of the title compound, see: Takusagawa et al. (1974); Shi et al. (2006). For applications of pyrazine-2-carboxylic acid, see: Wieser et al. (1997); Shul'pin \& Suss-Fink (1995).

Experimental

Crystal data
$\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}_{2} \mathrm{O}_{2}$
$M_{r}=124.10$

Orthorhombic, Pnma $a=11.3261$ (18) \AA

$$
\begin{aligned}
& b=6.3180(12) \AA \\
& c=7.3389(11) \AA \\
& V=525.16(15) \AA^{3} \\
& Z=4
\end{aligned}
$$

Mo $K \alpha$ radiation
$\mu=0.13 \mathrm{~mm}^{-1}$
$T=150$ (1) K
$0.20 \times 0.08 \times 0.05 \mathrm{~mm}$

Data collection

Kuma KM-4-CCD diffractometer Absorption correction: numerical (X-RED; Stoe \& Cie, 1999)
$T_{\text {min }}=0.990, T_{\text {max }}=0.999$
3291 measured reflections
561 independent reflections 399 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.028$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.030$

55 parameters

$w R\left(F^{2}\right)=0.083 \quad \mathrm{H}$-atom parameters constrained
$S=0.96$
561 reflections
$\Delta \rho_{\text {max }}=0.12 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.30 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1-\mathrm{H} 1 \mathrm{O} \cdots \mathrm{N} 2^{\mathrm{i}}$	0.87	1.79	2.664 (2)	179
$\mathrm{C} 2-\mathrm{H} 2 \cdots \mathrm{O} 1$	0.93	2.41	2.736 (2)	101
$\mathrm{C} 2-\mathrm{H} 2 \cdots \mathrm{O} 2^{\text {ii }}$	0.93	2.40	3.089 (2)	131
$\mathrm{C} 3-\mathrm{H} 3 \cdots \mathrm{O} 2^{\text {iii }}$	0.93	2.42	3.156 (2)	136

Symmetry codes: (i) $x-\frac{1}{2}, y,-z+\frac{3}{2}$; (ii) $x+\frac{1}{2}, y,-z+\frac{3}{2}$; (iii) $x+\frac{1}{2}, y,-z+\frac{1}{2}$.

Data collection: CrysAlis CCD (UNILIC \& Kuma, 2000); cell refinement: CrysAlis RED (UNILIC \& Kuma, 2000); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: $X P$ in SHELXTL/PC (Sheldrick, 1990) and ORTEP-3 (Version 1.062; Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2089).

References

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Sheldrick, G. M. (1990). SHELXTL/PC. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Shi, X.-F., Wu, L. \& Xing, Z.-Y. (2006). Acta Cryst. E62, o15-o17.
Shul'pin, G. B. \& Suss-Fink, G. (1995). J. Chem. Soc. Perkin Trans. 2, pp. 14591463.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Stoe \& Cie (1999). X-RED. Version 1.18. Stoe \& Cie GmbH, Darmstadt, Germany.
Takusagawa, F., Higuchi, T., Shimada, A., Tamura, C. \& Sasada, Y. (1974). Bull. Chem. Soc. Jpn, 47, 1409-1413.
UNILIC \& Kuma (2000). CrysAlis CCD and CrysAlis RED (Versions 1.163). Kuma Diffraction Instruments GmbH, Wrocław, Poland.
Wieser, M., Heinzmann, K. \& Kiener, A. (1997). Appl. Microbiol. Biotechnol. 48, 174-176.

supplementary materials

Acta Cryst. (2007). E63, o3300 [doi:10.1107/S1600536807030036]

The orthorhombic polymorph of pyrazine-2-carboxylic acid revisited

J. G. Malecki, R. Kruszynski and J. Kusz

Comment

The pyrazine-2-carboxylic acid is a one of the most common substances used for synthesis of pyrazine derivatives, which are important due to their bacteriostatic activity (Shi et al., 2006), antituberculous activity (Wieser et al., 1997) and selective oxidizing properties toward alkanes, benzene and alcohols (Shul'pin \& Suss-Fink, 1995).

The title compound was reported in two polymorphic forms: orthorhombic, space group Pna ${ }_{1}$, (Ia) (Takusagawa et al., 1974), and monoclinic, space group $P 2_{1}$, (Ib) (Shi et al., 2006). The structure of the polymorph (Ia) was determined by photographic methods and, based on solution derived from a sharpened Patterson map, the Pna 2_{1} space group was chosen as the correct one. However closer inspection of the atomic coordinates shows that the entire molecule is located on a mirror plane perpendicular to the z axis.

We have redetermined the crystal structure of the polymorph (Ia) in the Pnma space group at 150 K. Our results show that for the earlier reported crystal structure the choice of non-centrosymmetric space group was incorrect.

In (Ia) all atoms lie on a symmetry plane. The molecules are connected via $\mathrm{O} 1-\mathrm{H} 1 \mathrm{O} \cdots \mathrm{N} 2$ hydrogen bonds (Table 1) into a zigzag chain extending along the [100] direction and further through $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions (Table 1) into a sheet parallel to the (010) plane. This sheet is nearly identical to that observed in the polymorph (Ib). The main structural difference between the two polymorphs is in stacking of the adjacent sheets: in (Ib) they are related by a translation along the a axis ($3.7249(14) \AA$) whereas in (Ia) they are related by a 21 screw axis parallel to \mathbf{b}. In the first case the sheet packing leads to face-to-face stacking interactions of the aromatic rings whereas in (Ia) no stacking interactions are observed as the closest distance between the ring centroids is 5.1427 (10) \AA.

Experimental

Commercially available 2-pyrazinic acid (CAS: 98-97-5) was recrystallized from saturated water solution.

Refinement

The C bonded hydrogen atoms were placed in calculated positions after four cycles of anisotropic refinement and were refined as riding on adjacent carbon atom with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{C})$. The O bonded H atom was found in a difference Fourier synthesis after four cycles of anisotropic refinement and was refined as riding on adjacent O atom with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{O})$.

supplementary materials

Figures

Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2. Sheets parallel to (010) formed via O-H $\cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions (dashed lines).

pyrazine-2-carboxylic acid

Crystal data

$\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}_{2} \mathrm{O}_{2}$
 $M_{r}=124.10$

Orthorhombic, Pnma
Hall symbol: -P 2ac 2n
$a=11.3261$ (18) \AA
$b=6.3180(12) \AA$
$c=7.3389$ (11) \AA
$V=525.16(15) \AA^{3}$
$Z=4$

Data collection

Kuma KM-4-CCD
diffractometer
Radiation source: fine-focus sealed tube
Monochromator: graphite
Detector resolution: 1048576 pixels mm^{-1}
$T=150(1) \mathrm{K}$
ω scans
Absorption correction: numerical
(X-RED; Stoe \& Cie, 1999)
$T_{\text {min }}=0.990, T_{\text {max }}=0.999$
3291 measured reflections
$F_{000}=256$
$D_{\mathrm{x}}=1.570 \mathrm{Mg} \mathrm{m}^{-3}$
Mo K α radiation
$\lambda=0.71073 \AA$
Cell parameters from 984 reflections
$\theta=3-20^{\circ}$
$\mu=0.13 \mathrm{~mm}^{-1}$
$T=150$ (1) K
Prism, colourless
$0.20 \times 0.08 \times 0.05 \mathrm{~mm}$

Refinement

Refinement on F^{2}
Least-squares matrix: full

Secondary atom site location: structure-invariant direct methods
Hydrogen site location: mixed
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.030$
$w R\left(F^{2}\right)=0.083$
$S=0.96$
561 reflections
55 parameters
Primary atom site location: structure-invariant direct methods

H -atom parameters constrained

$$
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0564 P)^{2}\right]
$$

where $P=\left(F_{\mathrm{o}}{ }^{2}+2{F_{\mathrm{c}}}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.003$
$\Delta \rho_{\text {max }}=0.12 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\min }=-0.30$ e \AA^{-3}
Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.

Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F , with F set to zero for negative F^{2}. The threshold expression of $\mathrm{F}^{2}>2 \operatorname{sigma}\left(\mathrm{~F}^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F , and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
O2	$-0.13159(11)$	0.2500	$0.57951(18)$	$0.0269(4)$
O1	$-0.00947(12)$	0.2500	$0.82097(18)$	$0.0286(4)$
H1O	-0.0764	0.2500	0.8797	0.043^{*}
N1	$0.05965(14)$	0.2500	$0.3485(2)$	$0.0239(4)$
N2	$0.28508(14)$	0.2500	$0.5024(2)$	$0.0249(4)$
C1	$0.07595(16)$	0.2500	$0.5291(3)$	$0.0209(5)$
C2	$0.18758(17)$	0.2500	$0.6053(3)$	$0.0227(5)$
H2	0.1951	0.2500	0.7315	0.027^{*}
C3	$0.26968(18)$	0.2500	$0.3227(3)$	$0.0247(5)$
H3	0.3353	0.2500	0.2465	0.030^{*}
C4	$0.15758(17)$	0.2500	$0.2468(3)$	$0.0254(5)$
H4	0.1502	0.2500	0.1206	0.031^{*}
C5	$-0.03326(18)$	0.2500	$0.6448(3)$	$0.0223(5)$

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O2	$0.0166(8)$	$0.0410(9)$	$0.0232(8)$	0.000	$-0.0006(6)$	0.000
O1	$0.0170(7)$	$0.0515(9)$	$0.0174(8)$	0.000	$0.0006(6)$	0.000
N 1	$0.0215(10)$	$0.0315(9)$	$0.0185(9)$	0.000	$-0.0003(6)$	0.000
N 2	$0.0190(9)$	$0.0377(10)$	$0.0181(9)$	0.000	$0.0019(7)$	0.000
C 1	$0.0192(10)$	$0.0254(10)$	$0.0181(10)$	0.000	$0.0000(8)$	0.000
C 2	$0.0192(10)$	$0.0333(11)$	$0.0156(10)$	0.000	$-0.0003(8)$	0.000

C3	$0.0206(10)$	$0.0340(11)$	$0.0194(11)$	0.000	$0.0033(8)$	0.000
C4	$0.0254(12)$	$0.0341(11)$	$0.0168(10)$	0.000	$0.0008(8)$	0.000
C5	$0.0200(10)$	$0.0272(11)$	$0.0196(10)$	0.000	$-0.0006(8)$	0.000

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{O} 2-\mathrm{C} 5$	$1.212(2)$
$\mathrm{O} 1-\mathrm{C} 5$	$1.321(2)$
$\mathrm{O} 1-\mathrm{H} 1 \mathrm{O}$	0.8718
$\mathrm{~N} 1-\mathrm{C} 4$	$1.337(3)$
$\mathrm{N} 1-\mathrm{C} 1$	$1.338(2)$
$\mathrm{N} 2-\mathrm{C} 3$	$1.330(3)$
$\mathrm{N} 2-\mathrm{C} 2$	$1.338(2)$
$\mathrm{C} 5-\mathrm{O} 1-\mathrm{H} 1 \mathrm{O}$	107.9
$\mathrm{C} 4-\mathrm{N} 1-\mathrm{C} 1$	$116.02(16)$
$\mathrm{C} 3-\mathrm{N} 2-\mathrm{C} 2$	$116.84(17)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	$121.79(17)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 5$	$116.53(17)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 5$	$121.68(18)$
$\mathrm{N} 2-\mathrm{C} 2-\mathrm{C} 1$	$121.77(18)$
$\mathrm{N} 2-\mathrm{C} 2-\mathrm{H} 2$	119.1
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	119.1

$\mathrm{C} 1-\mathrm{C} 2$	$1.382(3)$
$\mathrm{C} 1-\mathrm{C} 5$	$1.500(3)$
$\mathrm{C} 2-\mathrm{H} 2$	0.9300
$\mathrm{C} 3-\mathrm{C} 4$	$1.386(3)$
$\mathrm{C} 3-\mathrm{H} 3$	0.9300
$\mathrm{C} 4-\mathrm{H} 4$	0.9300
$\mathrm{~N} 2-\mathrm{C} 3-\mathrm{C} 4$	$121.22(19)$
$\mathrm{N} 2-\mathrm{C} 3-\mathrm{H} 3$	119.4
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3$	119.4
$\mathrm{~N} 1-\mathrm{C} 4-\mathrm{C} 3$	$122.36(19)$
$\mathrm{N} 1-\mathrm{C} 4-\mathrm{H} 4$	118.8
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4$	118.8
$\mathrm{O} 2-\mathrm{C} 5-\mathrm{O} 1$	$125.05(19)$
$\mathrm{O} 2-\mathrm{C} 5-\mathrm{C} 1$	$122.27(17)$
$\mathrm{O} 1-\mathrm{C} 5-\mathrm{C} 1$	$112.69(17)$

Hydrogen-bond geometry ($\AA,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1 — \mathrm{H} 1 \mathrm{O} \cdots \mathrm{N} 2^{\mathrm{i}}$	0.87	1.79	$2.664(2)$	179
$\mathrm{C} 2 — \mathrm{H} 2 \cdots \mathrm{O} 1$	0.93	2.41	$2.736(2)$	101
$\mathrm{C} 2 — \mathrm{H} 2 \cdots \mathrm{O} 2^{\mathrm{ii}}$	0.93	2.40	$3.089(2)$	131
$\mathrm{C} 3 — \mathrm{H} 3 \cdots \mathrm{O} 2^{\mathrm{iii}}$	0.93	2.42	$3.156(2)$	136

Symmetry codes: (i) $x-1 / 2, y,-z+3 / 2$; (ii) $x+1 / 2, y,-z+3 / 2$; (iii) $x+1 / 2, y,-z+1 / 2$.

Fig. 1

supplementary materials

Fig. 2

